Mostrar el registro sencillo de la publicación

dc.contributor.authorHernández-Alvarez, Sergio
dc.contributor.authorLópez-Díaz, Juan L.
dc.date.accessioned2021-12-23T12:54:21Z
dc.date.available2021-12-23T12:54:21Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3650
dc.description.abstractClimate change is having an enormous impact on crop production in Latin America and the Caribbean. This problem not only concerns the volume of crop production but also the quality and safety of the food industry. Several research studies have proposed deep learning for plant disease detection. However, there is little information about the confidence of the prediction on unseen samples. Therefore, uncertainty in models of plant disease detection is required for effective crop management. In particular, uncertainty arising from sample selection bias makes it difficult to scale automatic plant disease detection systems to production. In this paper, we develop a probabilistic programming approach for plant disease detection using state-of-the-art Bayesian deep learning techniques and the uncertainty as a misclassification measurement. The results show that Bayesian inference achieves classification performance that is comparable to the standard optimization procedures for fine-tuning deep learning models. At the same time, the proposed method approximates the posterior density for the plant disease detection problem and quantify the uncertainty of the predictions for out-of-sample instances.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceApplied Soft Computing, 96, 106597es_CL
dc.subjectBayesian deep learninges_CL
dc.subjectPlant disease detectiones_CL
dc.subjectDeep learninges_CL
dc.titleUncertainty quantification for plant disease detection using Bayesian deep learninges_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisibib2.ucm.cl:2048/login?url=https://www.sciencedirect.com/science/article/pii/S1568494620305354#!es_CL
dc.ucm.doidoi.org/10.1016/j.asoc.2020.106597es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile