Mostrar el registro sencillo de la publicación

dc.contributor.authorGonzález-Faune, Patricio
dc.contributor.authorSánchez-Arévalo, Ignacio
dc.contributor.authorSarkar, Shrabana
dc.contributor.authorMajhi, Krishnendu
dc.contributor.authorBandopadhyay, Rajib
dc.contributor.authorCabrera-Barjas, Gustavo
dc.contributor.authorGómez, Aleydis
dc.contributor.authorBanerjee, Aparna
dc.date.accessioned2021-12-30T14:59:07Z
dc.date.available2021-12-30T14:59:07Z
dc.date.issued2021
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3692
dc.description.abstractGlycosyltransferase (GTs) is a wide class of enzymes that transfer sugar moiety, playing a key role in the synthesis of bacterial exopolysaccharide (EPS) biopolymer. In recent years, increased demand for bacterial EPSs has been observed in pharmaceutical, food, and other industries. The application of the EPSs largely depends upon their thermal stability, as any industrial application is mainly reliant on slow thermal degradation. Keeping this in context, EPS producing GT enzymes from three different bacterial sources based on growth temperature (mesophile, thermophile, and hyperthermophile) are considered for in silico analysis of the structural–functional relationship. From the present study, it was observed that the structural integrity of GT increases significantly from mesophile to thermophile to hyperthermophile. In contrast, the structural plasticity runs in an opposite direction towards mesophile. This interesting temperature-dependent structural property has directed the GT–UDP-glucose interactions in a way that thermophile has finally demonstrated better binding affinity (−5.57 to −10.70) with an increased number of hydrogen bonds (355) and stabilizing amino acids (Phe, Ala, Glu, Tyr, and Ser). The results from this study may direct utilization of thermophile-origin GT as best for industrial-level bacterial polysaccharide production.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourcePolymers, 13(11), 1771es_CL
dc.subjectBacterial polysaccharideses_CL
dc.subjectGlycosyl transferasees_CL
dc.subjectMesophileses_CL
dc.subjectThermophileses_CL
dc.subjectHyperthermophileses_CL
dc.subjectStructure function studyes_CL
dc.titleComputational study on temperature driven structure–function relationship of polysaccharide producing bacterial lycosyl transferase enzymees_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uriwww.mdpi.com/2073-4360/13/11/1771es_CL
dc.ucm.doidoi.org/10.3390/polym13111771es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile