Mostrar el registro sencillo de la publicación

dc.contributor.authorIbáñez-Barrios, María T.
dc.contributor.authorLópez-Cortés, Xaviera A.
dc.date.accessioned2022-01-14T19:41:14Z
dc.date.available2022-01-14T19:41:14Z
dc.date.issued2021
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3735
dc.description.abstractPathogens are infectious microorganisms that lodge in a host and are responsible for causing diseases. In many cases, the detection of pathogens is expensive in resources and time. In this way, mass spectrometry is combined with data mining techniques to produce fast, efficient, and low-cost pathogen detection. An automated desktop platform named X-MassFP is proposed to analyze and train predictive machine learning models capable of identifying pathogens based on m/z data from mass spectra. Previous research analyzed serum samples from healthy and diseased salmonid fishes with Piscirickettsia salmonis. Their spectra were obtained and used them to perform a multiple alignment and binning experiments with our platform. Then, many combinations of pipes were implemented to obtain the best predictive models. Different bin sizes and feature selectors were implemented, as well as the use of oversampling on unbalanced data sets. The best results obtained with the X-MassFP platform corresponded to KNN using multiple alignment and SVM using the binning method, with 90% and 88.8% of accuracy, respectively.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.source2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), 20758274es_CL
dc.subjectFingerprint recognitiones_CL
dc.subjectMachine learninges_CL
dc.subjectMass spectrometryes_CL
dc.subjectPathogens detectiones_CL
dc.titleX-MassFP: a platform with focus on pattern research for mass spectrometry fingerprint recognitiones_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/9465272es_CL
dc.ucm.doidoi.org/10.1109/ICAACCA51523.2021.9465272es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile