Mostrar el registro sencillo de la publicación
An approach for data mining of electronic health record data for suicide risk management: database analysis for clinical decision support
dc.contributor.author | Berrouiguet, Sofian | |
dc.contributor.author | Billot, Romain | |
dc.contributor.author | Larsen, Mark E. | |
dc.contributor.author | López-Castroman, Jorge | |
dc.contributor.author | Jaussent, Isabelle | |
dc.contributor.author | Walter, Michel | |
dc.contributor.author | Lenca, Philippe | |
dc.contributor.author | Baca-García, Enrique | |
dc.contributor.author | Courtet, Philippe | |
dc.date.accessioned | 2023-01-23T18:06:56Z | |
dc.date.available | 2023-01-23T18:06:56Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://repositorio.ucm.cl/handle/ucm/4438 | |
dc.description.abstract | Background: In an electronic health context, combining traditional structured clinical assessment methods and routine electronic health–based data capture may be a reliable method to build a dynamic clinical decision-support system (CDSS) for suicide prevention. Objective: The aim of this study was to describe the data mining module of a Web-based CDSS and to identify suicide repetition risk in a sample of suicide attempters. Methods: We analyzed a database of 2802 suicide attempters. Clustering methods were used to identify groups of similar patients, and regression trees were applied to estimate the number of suicide attempts among these patients. Results: We identified 3 groups of patients using clustering methods. In addition, relevant risk factors explaining the number of suicide attempts were highlighted by regression trees. Conclusions: Data mining techniques can help to identify different groups of patients at risk of suicide reattempt. The findings of this study can be combined with Web-based and smartphone-based data to improve dynamic decision making for clinicians. | es_CL |
dc.language.iso | en | es_CL |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.source | JMIR Ment Health, 6(5), e9766 | es_CL |
dc.subject | Clinical decision support system | es_CL |
dc.subject | Data mining | es_CL |
dc.subject | Electronic health | es_CL |
dc.subject | Mobile phone | es_CL |
dc.subject | Prevention | es_CL |
dc.subject | Suicide | es_CL |
dc.subject | Suicide attempts | es_CL |
dc.title | An approach for data mining of electronic health record data for suicide risk management: database analysis for clinical decision support | es_CL |
dc.type | Article | es_CL |
dc.ucm.facultad | Facultad de Ciencias de la Salud | es_CL |
dc.ucm.indexacion | Scopus | es_CL |
dc.ucm.indexacion | Isi | es_CL |
dc.ucm.uri | mental.jmir.org/2019/5/e9766/ | es_CL |
dc.ucm.doi | doi.org/10.2196/mental.9766 | es_CL |
Ficheros en la publicación
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a esta publicación. |