Mostrar el registro sencillo de la publicación

dc.contributor.authorBerrouiguet, Sofian
dc.contributor.authorBillot, Romain
dc.contributor.authorLarsen, Mark E.
dc.contributor.authorLópez-Castroman, Jorge
dc.contributor.authorJaussent, Isabelle
dc.contributor.authorWalter, Michel
dc.contributor.authorLenca, Philippe
dc.contributor.authorBaca-García, Enrique
dc.contributor.authorCourtet, Philippe
dc.date.accessioned2023-01-23T18:06:56Z
dc.date.available2023-01-23T18:06:56Z
dc.date.issued2019
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4438
dc.description.abstractBackground: In an electronic health context, combining traditional structured clinical assessment methods and routine electronic health–based data capture may be a reliable method to build a dynamic clinical decision-support system (CDSS) for suicide prevention. Objective: The aim of this study was to describe the data mining module of a Web-based CDSS and to identify suicide repetition risk in a sample of suicide attempters. Methods: We analyzed a database of 2802 suicide attempters. Clustering methods were used to identify groups of similar patients, and regression trees were applied to estimate the number of suicide attempts among these patients. Results: We identified 3 groups of patients using clustering methods. In addition, relevant risk factors explaining the number of suicide attempts were highlighted by regression trees. Conclusions: Data mining techniques can help to identify different groups of patients at risk of suicide reattempt. The findings of this study can be combined with Web-based and smartphone-based data to improve dynamic decision making for clinicians.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJMIR Ment Health, 6(5), e9766es_CL
dc.subjectClinical decision support systemes_CL
dc.subjectData mininges_CL
dc.subjectElectronic healthes_CL
dc.subjectMobile phonees_CL
dc.subjectPreventiones_CL
dc.subjectSuicidees_CL
dc.subjectSuicide attemptses_CL
dc.titleAn approach for data mining of electronic health record data for suicide risk management: database analysis for clinical decision supportes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Saludes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimental.jmir.org/2019/5/e9766/es_CL
dc.ucm.doidoi.org/10.2196/mental.9766es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile