Mostrar el registro sencillo de la publicación

dc.contributor.authorAmigo, N.
dc.contributor.authorPalominos, Simón
dc.contributor.authorValencia, F.
dc.date.accessioned2023-01-23T18:08:33Z
dc.date.available2023-01-23T18:08:33Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4441
dc.description.abstractMetallic glasses are one of the most interesting mechanical materials studied in the last years, but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can be addressed with the development and application of predictive techniques capable to describe the plastic regime. Here, machine learning models were employed for the prediction of plastic properties in CuZr metallic glasses. To this aim, 100 different samples were subjected to tensile tests by means of molecular dynamics simulations. A total of 17 materials properties were calculated and explored using statistical analysis. Strong correlations were found for stoichiometry, temperature, structural, and elastic properties with plastic properties. Three regression models were employed for the prediction of six plastic properties. Linear and Ridge regressions delivered the better prediction capability, with coefficients of determination above ∼ 80% for three plastic properties, whereas Lasso regression rendered lower performance, with coefficients of determination above ∼ 60% for two plastic properties. Overall, our work shows that molecular dynamics simulations together with machine learning models can provide a framework for the prediction of plastic behavior of complex materials.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceScientific Reports, 13(1), 348es_CL
dc.titleMachine learning modeling for the prediction of plastic properties in metallic glasseses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urinature.com/articles/s41598-023-27644-xes_CL
dc.ucm.doidoi.org/10.1038/s41598-023-27644-xes_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile