Mostrar el registro sencillo de la publicación

dc.contributor.authorSaulo, Helton
dc.contributor.authorVila, Roberto
dc.contributor.authorBorges, Giovanna V.
dc.contributor.authorBourguignon, Marcelo
dc.contributor.authorLeiva, Victor
dc.contributor.authorMarchant, Carolina
dc.date.accessioned2023-03-03T13:40:50Z
dc.date.available2023-03-03T13:40:50Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4482
dc.description.abstractIncome modeling is crucial in determining workers’ earnings and is an important research topic in labor economics. Traditional regressions based on normal distributions are statistical models widely applied. However, income data have an asymmetric behavior and are best modeled by non-normal distributions. The objective of this work is to propose parametric quantile regressions based on two asymmetric income distributions: Dagum and Singh–Maddala. The proposed quantile regression models are based on reparameterizations of the original distributions by inserting a quantile parameter. We present the reparameterizations, properties of the distributions, and the quantile regression models with their inferential aspects. We proceed with Monte Carlo simulation studies, considering the performance evaluation of the maximum likelihood estimation and an analysis of the empirical distribution of two types of residuals. The Monte Carlo results show that both models meet the expected outcomes. We apply the proposed quantile regression models to a household income data set provided by the National Institute of Statistics of Chile. We show that both proposed models have good performance in model fitting. Thus, we conclude that the obtained results favor the Singh–Maddala and Dagum quantile regression models for positive asymmetrically distributed data related to incomes. The economic implications of our investigation are discussed in the final section. Hence, our proposal can be a valuable addition to the tool-kit of applied statisticians and econometricians.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceMathematics, 11(2), 448es_CL
dc.subjectBirnbaum–Saunders distributiones_CL
dc.subjectDagum distributiones_CL
dc.subjectIncome data and distributionses_CL
dc.subjectFractile regressiones_CL
dc.subjectSingh–Maddala distributiones_CL
dc.subjectStatistical reparameterizationses_CL
dc.titleModeling income data via new parametric quantile regressions: formulation, computational statistics, and applicationes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2227-7390/11/2/448es_CL
dc.ucm.doidoi.org/10.3390/math11020448es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile