Mostrar el registro sencillo de la publicación

dc.contributor.authorVásquez-Coronel, José A
dc.contributor.authorMora, Marco
dc.contributor.authorVilches-Ponce, Karina
dc.contributor.authorSilva Pavez, Fabián
dc.contributor.authorTorres-Gonzalez, Italo
dc.contributor.authorBarria-Valdevenito, Pedro
dc.date.accessioned2023-03-08T13:28:10Z
dc.date.available2023-03-08T13:28:10Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4494
dc.description.abstractAutoencoders are neural networks that are characterized by having the same inputs and outputs. This kind of Neural Networks aim to estimate a nonlinear transformation whose parameters allow to represent the input patterns to the network. The Extreme Learning Machine (ELM-AE) Autoencoders have random weights and biases in the hidden layer, and compute the output parameters by solving an overdetermined linear system using the Moore-Penrose Pseudoinverse. ELM-AE training is based on the Fast Iterative Shrinkage-Thresholding (FISTA). In this paper, we propose to improve the convergence speed obtained by FISTA considering the use of two algorithms of the Shrinkage-Thresholding class, namely Greedy FISTA and Linearly-Convergent FISTA. 6 frequently used public machine learning datasets were considered: MNIST, NORB, CIFAR10, UMist, Caltech256, Stanford Cars. Experiments were carried out varying the number of neurons in the hidden layer of the Autoencoders, considering the 3 algorithms, for all the databases. The experimental results showed that Greedy FISTA and Linearly-Convergent FISTA presented higher convergence speed, increasing the speed of ELM-Autoencoder training, maintaining a comparable generalization error between the three Shrinkage-Thresholding algorithms.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceInternational Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, 1-7es_CL
dc.subjectTraininges_CL
dc.subjectLinear systemses_CL
dc.subjectMachine learning algorithmses_CL
dc.subjectExtreme learning machineses_CL
dc.subjectDatabaseses_CL
dc.subjectNeuronses_CL
dc.subjectMachine learninges_CL
dc.titleA new fast training algorithm for autoencoder neural networks based on extreme learning machinees_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10006276es_CL
dc.ucm.doidoi.org/10.1109/ICA-ACCA56767.2022.10006276es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile