Mostrar el registro sencillo de la publicación

dc.contributor.authorAlegría Guajardo, Carlos E.
dc.contributor.authorLópez-Cortés, Xaviera A.
dc.contributor.authorHernández Álvarez, Sergio
dc.date.accessioned2023-03-08T13:36:26Z
dc.date.available2023-03-08T13:36:26Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4496
dc.description.abstractPathogenic bacteria are harmful microorganisms capable of causing diseases. To fight or eliminate those microorganisms, antibiotics with antimicrobial action have been developed wich can be synthetic or semi synthetic. Through time, bacteria has developed mechanisms to fight this antimicrobial action, generating the antibiotic resistance. This issue is a serious global problem that affects the health area. Because of this, a workflow based on the KDD methodology. The proposed approach use data obtained through MALDI-TOF mass spectrometry techniques without preprocessing, in conjunction with deep learning, to implement a multiclass classification neural network of bacteria at the species level, with the purpose of obtaining a fast and reliable recognition. Different tests were implemented to this neural network, obtaining promising precision results with the aproach, reaching accuracy 99.15% the highest and 98.09% the lowest. Implementing evaluation metrics such as confusion matrix and classification reports to measure the recognition of species at the individual level, finding cases in wich the precision was 100% the highest and 94% the lowest.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceInternational Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, 1-6es_CL
dc.subjectDeep learninges_CL
dc.subjectMeasurementes_CL
dc.subjectMicroorganismses_CL
dc.subjectAntibioticses_CL
dc.subjectNeural networkses_CL
dc.subjectMass spectroscopyes_CL
dc.subjectReliabilityes_CL
dc.titleDeep learning algorithm applied to bacteria recognitiones_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10005945es_CL
dc.ucm.doidoi.org/10.1109/ICA-ACCA56767.2022.10005945es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile