Mostrar el registro sencillo de la publicación

dc.contributor.authorLópez-Cortés, Xaviera A.
dc.contributor.authorManríquez-Troncoso, José M.
dc.contributor.authorYáñez Sepúlveda, Alejandra
dc.contributor.authorSuazo Soto, Patricio
dc.date.accessioned2025-05-29T18:50:50Z
dc.date.available2025-05-29T18:50:50Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6052
dc.description.abstractAntimicrobial resistance (AMR) is one of the most pressing public health challenges of the 21st century. This study aims to evaluate the efficacy of mass spectral data generated by VITEK® MS instruments for predicting antibiotic resistance in Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae using machine learning algorithms. Additionally, the potential of pre-trained models was assessed through transfer learning analysis. A dataset comprising 2229 mass spectra was collected, and classification algorithms, including Support Vector Machines, Random Forest, Logistic Regression, and CatBoost, were applied to predict resistance. CatBoost demonstrated a clear advantage over the other models, effectively handling complex non-linear relationships within the spectra and achieving an AUROC of 0.91 and an F1 score of 0.78 for E. coli. In contrast, transfer learning yielded suboptimal results. These findings highlight the potential of gradient-boosting techniques to enhance resistance prediction, particularly with data from less conventional platforms like VITEK® MS. Furthermore, the identification of specific biomarkers using SHAP values indicates promising potential for clinical applications in early diagnosis. Future efforts focused on standardizing data and refining algorithms could expand the utility of these approaches across diverse clinical environments, supporting the global fight against AMR.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceInternational Journal of Molecular Sciences, 26(3), 1140es_CL
dc.subjectAntibiotic resistancees_CL
dc.subjectStaphylococcus aureuses_CL
dc.subjectEscherichia colies_CL
dc.subjectKlebsiella pneumoniaees_CL
dc.subjectMachine learninges_CL
dc.subjectTransfer learninges_CL
dc.titleIntegrating machine learning with MALDI-TOF mass spectrometry for rapid and accurate antimicrobial resistance detection in clinical pathogenses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/1422-0067/26/3/1140es_CL
dc.ucm.doidoi.org/10.3390/ijms26031140es_CL


Ficheros en la publicación

Vista Previa No Disponible
Vista Previa No Disponible

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile