Mostrar el registro sencillo de la publicación

dc.contributor.authorRomán Cañizare, Milton
dc.contributor.authorAzurdia-Meza, Cesar
dc.contributor.authorPalacios Játiva, Pablo
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorSánchez, Iván
dc.date.accessioned2025-05-29T18:52:08Z
dc.date.available2025-05-29T18:52:08Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6053
dc.description.abstractThis paper presents an innovative approach to improving visible light communication (VLC) systems in total shadowing conditions by integrating intelligent reflecting surfaces (IRSs), angle diversity receivers (ADRs), and recurrent neural networks (RNNs). Two ADR configurations (pyramidal and hemispherical) are evaluated, along with signal combination mechanisms: maximum ratio combining (MRC) and select best combining (SBC). The RNN is employed to dynamically optimize the IRS placement, maximizing the signal-to-noise ratio (SNR) at the ADRs and enhancing overall system performance in non-line-of-sight (NLoS) scenarios. This study investigates the spatial distribution of SNRs in VLC systems using RNN-optimized IRSs, comparing the performance of different ADR configurations and signal combination methods. The results demonstrate significant improvements in received power and the SNR compared to non-optimized setups, showcasing the effectiveness of RNN-based optimization for robust signal reception. This article highlights the potential of machine learning in enhancing VLC technology, offering a practical solution for real-world indoor applications. The findings emphasize the importance of adaptive IRS placement and spur further exploration of advanced algorithms and ADR designs to address challenges in complex indoor environments.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceApplied Sciences, 15(3), 1617es_CL
dc.subjectAngular diversity receiver (ADR)es_CL
dc.subjectIntelligent reflective surfaces (IRSs)es_CL
dc.subjectMachine learning (ML)es_CL
dc.subjectRecurrent neural network (RNN)es_CL
dc.subjectVisible light communication (VLC)es_CL
dc.titleIntelligent reflective surface-assisted visible light communication with angle diversity receivers and RNN: optimizing non-line-of-sight indoor environmentses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2076-3417/15/3/1617es_CL
dc.ucm.doidoi.org/10.3390/app15031617es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile