Mostrar el registro sencillo de la publicación

dc.contributor.authorSilva-Aravena, Fabián
dc.contributor.authorMorales, Jenny
dc.contributor.authorJayabalan, Manoj
dc.contributor.authorEhsan Rana, Muhammad
dc.contributor.authorGutiérrez-Bahamondes, Jimmy H
dc.date.accessioned2025-06-05T14:50:50Z
dc.date.available2025-06-05T14:50:50Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6071
dc.description.abstractSurgical waiting lists present significant challenges to healthcare systems, particularly in resource-constrained settings where equitable prioritization and efficient resource allocation are critical. We aim to address these issues by developing a novel, dynamic, and interpretable framework for prioritizing surgical patients. Our methodology integrates machine learning (ML), stochastic simulations, and explainable AI (XAI) to capture the temporal evolution of dynamic prioritization scores, 𝑞𝑝(𝑡) , while ensuring transparency in decision making. Specifically, we employ the Light Gradient Boosting Machine (LightGBM) for predictive modeling, stochastic simulations to account for dynamic variables and competitive interactions, and SHapley Additive Explanations (SHAPs) to interpret model outputs at both the global and patient-specific levels. Our hybrid approach demonstrates strong predictive performance using a dataset of 205 patients from an otorhinolaryngology (ENT) unit of a high-complexity hospital in Chile. The LightGBM model achieved a mean squared error (MSE) of 0.00018 and a coefficient of determination (𝑅2 ) value of 0.96282, underscoring its high accuracy in estimating 𝑞𝑝(𝑡) . Stochastic simulations effectively captured temporal changes, illustrating that Patient 1’s 𝑞𝑝(𝑡) increased from 0.50 (at 𝑡=0 ) to 1.026 (at 𝑡=10 ) due to the significant growth of dynamic variables such as severity and urgency. SHAP analyses identified severity (Sever) as the most influential variable, contributing substantially to 𝑞𝑝(𝑡) , while non-clinical factors, such as the capacity to participate in family activities (Lfam), exerted a moderating influence. Additionally, our methodology achieves a reduction in waiting times by up to 26%, demonstrating its effectiveness in optimizing surgical prioritization. Finally, our strategy effectively combines adaptability and interpretability, ensuring dynamic and transparent prioritization that aligns with evolving patient needs and resource constraints.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceTechnologies, 13(2), 72es_CL
dc.subjectDynamic prioritizationes_CL
dc.subjectMachine learning in healthcarees_CL
dc.subjectExplainable AIes_CL
dc.subjectSurgical waiting listses_CL
dc.subjectStochastic simulationes_CL
dc.titleDynamic surgical prioritization: a machine learning and XAI-based strategyes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.urimdpi.com/2227-7080/13/2/72es_CL
dc.ucm.doidoi.org/10.3390/technologies13020072es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile