Mostrar el registro sencillo de la publicación

dc.contributor.authorBotero-Valencia, Juan
dc.contributor.authorGarcía-Pineda, Vanessa
dc.contributor.authorValencia-Arias, Alejandro
dc.contributor.authorValencia, Jackeline
dc.contributor.authorReyes-Vera, Erick
dc.contributor.authorMejia-Herrera, Mateo
dc.contributor.authorHernández-García, Ruber
dc.date.accessioned2025-06-05T14:54:11Z
dc.date.available2025-06-05T14:54:11Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6074
dc.description.abstractMachine learning (ML) has revolutionized resource management in agriculture by analyzing vast amounts of data and creating precise predictive models. Precision agriculture improves agricultural productivity and profitability while reducing costs and environmental impact. However, ML implementation faces challenges such as managing large volumes of data and adequate infrastructure. Despite significant advances in ML applications in sustainable agriculture, there is still a lack of deep and systematic understanding in several areas. Challenges include integrating data sources and adapting models to local conditions. This research aims to identify research trends and key players associated with ML use in sustainable agriculture. A systematic review was conducted using the PRISMA methodology by a bibliometric analysis to capture relevant studies from the Scopus and Web of Science databases. The study analyzed the ML literature in sustainable agriculture between 2007 and 2025, identifying 124 articles that meet the criteria for certainty assessment. The findings show a quadratic polynomial growth in the publication of articles on ML in sustainable agriculture, with a notable increase of up to 91% per year. The most productive years were 2024, 2022, and 2023, demonstrating a growing interest in the field. The study highlights the importance of integrating data from multiple sources for improved decision making, soil health monitoring, and understanding the interaction between climate, topography, and soil properties with agricultural land use and crop patterns. Furthermore, ML in sustainable agriculture has evolved from understanding weather data to integrating advanced technologies like the Internet of Things, remote sensing, and smart farming. Finally, the research agenda highlights the need for the deepening and expansion of predominant concepts, such as deep learning and smart farming, to develop more detailed and specialized studies and explore new applications to maximize the benefits of ML in agricultural sustainability.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceAgriculture, 15(4), 377es_CL
dc.subjectDeep learninges_CL
dc.subjectNeural networkses_CL
dc.subjectPrecision farminges_CL
dc.subjectInternet of Thingses_CL
dc.subjectPRISMA 2020es_CL
dc.titleMachine learning in sustainable agriculture: systematic review and research perspectiveses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2077-0472/15/4/377es_CL
dc.ucm.doidoi.org/10.3390/agriculture15040377es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile