Mostrar el registro sencillo de la publicación

dc.contributor.authorQuinteros, Axel
dc.contributor.authorZabala-Blanco, David
dc.date.accessioned2025-06-05T15:28:53Z
dc.date.available2025-06-05T15:28:53Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6099
dc.description.abstractFingerprint recognition is one of the most effective and widely adopted methods for person identification. However, the computational time required for the querying of large databases is excessive. To address this, preprocessing steps such as classification are necessary to speed up the response time to a query. Fingerprints are typically categorized into five classes, though this classification is unbalanced. While advanced classification algorithms, including support vector machines (SVMs), multilayer perceptrons (MLPs), and convolutional neural networks (CNNs), have demonstrated near-perfect accuracy (approaching 100%), their high training times limit their widespread applicability across institutions. In this study, we introduce, for the first time, the use of a multilayer extreme learning machine (M-ELM) for fingerprint classification, aiming to improve training efficiency. A comparative analysis is conducted with CNNs and unbalanced extreme learning machines (W-ELMs), as these represent the most influential methodologies in the literature. The tests utilize a database generated by SFINGE software, which simulates realistic fingerprint distributions, with datasets comprising hundreds of thousands of samples. To optimize and simplify the M-ELM, widely recognized descriptors in the field—Capelli02, Liu10, and Hong08—are used as input features. This effectively reduces dimensionality while preserving the representativeness of the fingerprint information. A brute-force heuristic optimization approach is applied to determine the hyperparameters that maximize classification accuracy across different M-ELM configurations while avoiding excessive training times. A comparison is made with the aforementioned approaches in terms of accuracy, penetration rate, and computational cost. The results demonstrate that a two-layer hidden ELM achieves superior classification of both majority and minority fingerprint classes with remarkable computational efficiency.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceApplied Sciences, 15(5), 2793es_CL
dc.subjectFeature descriptorses_CL
dc.subjectFingerprint classificationes_CL
dc.subjectIdentification systemses_CL
dc.subjectBiometryes_CL
dc.subjectMultilayer extreme learning machineses_CL
dc.titleFingerprint classification based on multilayer extreme learning machineses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2076-3417/15/5/2793es_CL
dc.ucm.doidoi.org/10.3390/app15052793es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile