Mostrar el registro sencillo de la publicación

dc.contributor.authorRochmawati, Ike Dhiah
dc.contributor.authorDeo, Salil
dc.contributor.authorLees, Jennifer
dc.contributor.authorMark, Patrick B.
dc.contributor.authorSattar, Naveed
dc.contributor.authorCelis-Morales, Carlos
dc.contributor.authorPell, Jill P.
dc.contributor.authorWelsh, Paul
dc.contributor.authorHo, Frederick K.
dc.date.accessioned2025-07-07T18:20:46Z
dc.date.available2025-07-07T18:20:46Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6200
dc.description.abstractAims This study aims to explore whether conventional and emerging biomarkers could improve risk discrimination and calibration in the secondary prevention of recurrent atherosclerotic cardiovascular disease (ASCVD), based on a model using predictors from SMART2 (Secondary Manifestations of ARTerial Disease). Methods and results In a cohort of 20 658 UK Biobank participants with medical history of ASCVD, we analysed any improvement in C indices and net reclassification index (NRI) for future ASCVD events, following addition of lipoprotein A (LP-a), apolipoprotein B, Cystatin C, Hemoglobin A1c (HbA1c), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase, and alkaline phosphatase (ALP), to a model with predictors used in SMART2 for the outcome of recurrent major cardiovascular event. We also examined any improvement in C indices and NRIs replacing creatinine-based estimated glomerular filtration rate (eGFR) with Cystatin C–based estimates. Calibration plots between different models were also compared. Compared with the baseline model (C index = 0.663), modest increments in C indices were observed when adding HbA1c (ΔC = 0.0064, P < 0.001), Cystatin C (ΔC = 0.0037, P < 0.001), GGT (ΔC = 0.0023, P < 0.001), AST (ΔC = 0.0007, P < 0.005) or ALP (ΔC = 0.0010, P < 0.001) or replacing eGFRCr with eGFRCysC (ΔC = 0.0036, P < 0.001) or eGFRCr-CysC (ΔC = 0.00336, P < 0.001). Similarly, the strongest improvements in NRI were observed with the addition of HbA1c (NRI = 0.014) or Cystatin C (NRI = 0.006) or replacing eGFRCr with eGFRCr-CysC (NRI = 0.001) or eGFRCysC (NRI = 0.002). There was no evidence that adding biomarkers modified calibration. Conclusion Adding several biomarkers, most notably Cystatin C and HbA1c, but not LP-a, in a model using SMART2 predictors modestly improved discrimination.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceEuropean Journal of Preventive Cardiology, 32(7), 585-595es_CL
dc.subjectCardiovascular diseasees_CL
dc.subjectSMART2es_CL
dc.subjectRisk prediction modeles_CL
dc.subjectSecondary preventiones_CL
dc.titleAdding traditional and emerging biomarkers for risk assessment in secondary prevention: a prospective cohort study of 20 656 patients with cardiovascular diseasees_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urioxfordjournals.ucm.elogim.com/eurjpc/article/32/7/585/7849694es_CL
dc.ucm.doidoi.org/10.1093/eurjpc/zwae352es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile