Mostrar el registro sencillo de la publicación

dc.contributor.authorLópez, Juan L.
dc.contributor.authorVásquez-Coronel, José A.
dc.date.accessioned2024-09-27T14:03:46Z
dc.date.available2024-09-27T14:03:46Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5676
dc.description.abstractTime series data are a crucial information source for various natural and societal processes. Short time series can exhibit long-range correlations that reveal significant features not easily discernible in longer ones. Such short time series find utility in AI applications for training models to recognize patterns, make predictions, and perform classification tasks. However, traditional methods like DFA fail as classifiers for monofractal short time series, especially when the series are very short. In this study, we evaluate the performance of the traditional DFA method against the CNN-SVM approach of neural networks as classifiers for different monofractal models. We examine their performance as a function of the decreasing length of synthetic samples. The results demonstrate that CNN-SVM achieves superior classification rates compared to DFA. The overall accuracy rate of CNN-SVM ranges between 64% and 98% , whereas DFA’s accuracy rate ranges between 16% and 64% .es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceFractal and Fractional, 8(8), 460es_CL
dc.subjectDFAes_CL
dc.subjectHurst exponentes_CL
dc.subjectSynthetic fluctuationes_CL
dc.subjectNeural networkes_CL
dc.subjectShort time serieses_CL
dc.titleAnalyzing monofractal short and very short time series: a comparison of detrended fluctuation analysis and convolutional neural networks as classifierses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Agrarias y Forestaleses_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2504-3110/8/8/460es_CL
dc.ucm.doidoi.org/10.3390/fractalfract8080460es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile