• Inicio
  • Acerca de
  • Formulario Contacto
  • Sibib
  • Login
Listar por materia 
  •   Repositorio Universidad Católica del Maule
  • Listar por materia
  •   Repositorio Universidad Católica del Maule
  • Listar por materia
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo Repositorio UCMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Listar por materia "Fingerprint recognition"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

Ordenar por:

Orden:

Resultados:

Mostrando publicaciones 1-7 de 7

  • título
  • fecha de publicación
  • fecha de envío
  • ascendente
  • descendente
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
  • Accelerated biometric fingerprint search on a multi-GPU environment 

    Barrientos, Ricardo ORCID; Hernández-García, Ruber; Mora, Marco ORCID; Riquelme Pizarro, Javier; Laroze, D. (2023)
    One of the largest biometric databases in Chile is fingerprints, which is also the most widely used biometric in the national context. In this sense, it is relevant to have efficient algorithms in execution time on this ...

  • Fingerprint classification with the extreme learning machine algorithm for multilayer perceptron 

    Zabala-Blanco, David; Quinteros, Axel; Mora, Marco ORCID; Hernández-García, Ruber; Flores-Calero, Marco (2022)
    Fingerprint classification comes to be a relevant guarantee for efficient as well as accurate fingerprint identification, in particular in the case of dealing with one-to-many fingerprint identification. Nevertheless, owing ...

  • Mathematical palm vein modeling for large-scale biometric recognition 

    Salazar-Jurado, Edwin; Hernández-García, Ruber; Vilches-Ponce, Karina; Barrientos, Ricardo ORCID (2023)
    Individual recognition through palm vein authentication has gained the attention of the scientific community due to its high level of security. However, the algorithms for recognition are validated with a limited number ...

  • Parallel training of a set of online sequential extreme learning machines 

    Gelvez-Almeida, Elkin; Barrientos, Ricardo ORCID; Vilches-Ponce, Karina; Mora, Marco ORCID (2022)
    Size databases have constantly increased from advances in technology and the Internet, so processing this vast amount of information has been a great challenge. The neural network Extreme Learning Machine (ELM) have been ...

  • Review of extreme learning machines for the identification and classification of fingerprint databases 

    Martínez, Diego; Zabala-Blanco, David; Ahumada García, Roberto; Azurdia-Meza, Cesar A.; Flores-Calero, Marco; Palacios-Jativa, Pablo (2022)
    The fingerprint is one of the most popular and used biometric traits for the identification of people, due to its bio-invariant characteristic, precision, and easy acquisition. One of the stages in the identification of ...

  • Strategy based on data mining and MALDI-Mass spectrometry for control disease of SRS in Salmo Salar 

    López-Cortés, Xaviera A.; Ávila-Salas, Fabián; Orellana, Cristopher; Santos, Leonardo S. (2018)
    Piscirickettsia salmonis is a highly transmissible pathogens that cause high mortality in farmed salmonids. In this way, new techniques based on mass spectrometry (MS) and machine learning were applied and combined in an ...

  • X-MassFP: a platform with focus on pattern research for mass spectrometry fingerprint recognition 

    Ibáñez-Barrios, María T.; López-Cortés, Xaviera A. (2021)
    Pathogens are infectious microorganisms that lodge in a host and are responsible for causing diseases. In many cases, the detection of pathogens is expensive in resources and time. In this way, mass spectrometry is combined ...

Sistema de Bibliotecas de la Universidad Católica del Maule, 2017
Campus San Miguel, Talca. Teléfono (56) (71) 2-203 359
Campus Nuestra Señora del Carmen, Curicó. Teléfono (56) (75) 2203 111
Campus San Isidro, Los Niches. Teléfono (56) (75) 2203 617