Mostrar el registro sencillo de la publicación

dc.contributor.authorLópez-Cortés, Xaviera A.
dc.contributor.authorMatamala, Felipe
dc.contributor.authorMaldonado, Carlos
dc.contributor.authorMora-Poblete, Freddy
dc.contributor.authorScapim, Carlos A.
dc.date.accessioned2020-12-28T19:31:53Z
dc.date.available2020-12-28T19:31:53Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3378
dc.description.abstractAnalysis of population genetic variation and structure is a common practice for genome-wide studies, including association mapping, ecology, and evolution studies in several crop species. In this study, machine learning (ML) clustering methods, K-means (KM), and hierarchical clustering (HC), in combination with non-linear and linear dimensionality reduction techniques, deep autoencoder (DeepAE) and principal component analysis (PCA), were used to infer population structure and individual assignment of maize inbred lines, i.e., dent field corn (n = 97) and popcorn (n = 86). The results revealed that the HC method in combination with DeepAE-based data preprocessing (DeepAE-HC) was the most effective method to assign individuals to clusters (with 96% of correct individual assignments), whereas DeepAE-KM, PCA-HC, and PCA-KM were assigned correctly 92, 89, and 81% of the lines, respectively. These findings were consistent with both Silhouette Coefficient (SC) and Davies–Bouldin validation indexes. Notably, DeepAE-HC also had better accuracy than the Bayesian clustering method implemented in InStruct. The results of this study showed that deep learning (DL)-based dimensional reduction combined with ML clustering methods is a useful tool to determine genetically differentiated groups and to assign individuals into subpopulations in genome-wide studies without having to consider previous genetic assumptions.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceFrontiers in genetics, 11, 543459es_CL
dc.subjectDeep learninges_CL
dc.subjectGenome-wide studieses_CL
dc.subjectMachine learninges_CL
dc.subjectSingle-nucleotide polymorphismses_CL
dc.subjectDimensionality reductiones_CL
dc.titleA deep learning approach to population structure inference in inbred lines of maizees_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.doidoi.org/10.3389/fgene.2020.543459es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile