Predicting bacterial antibiotic resistance using MALDI-TOF mass spectrometry databases with ELM applications
Autor
Tirado-Marabolí, Felipe
Lopez Cortez, Xaviera
Macaya Mejías, Vicente
Zabala-Blanco, David
Manríquez-Troncoso, José M.
Ahumada-García, Roberto
Fecha
2024Resumen
Early detection of antibiotic resistance is a crucial task, especially for vulnerable patients under prolonged treatments with a single antibiotic. To solve this, machine learning approaches have been reported in the state of art. Researchers have used MALDI-TOF MS in order to predict antibiotic resistance and/or susceptibility in bacterial samples. Weis, et al. implemented LR, LightGBM and ANN to study the antibiotic resistance on bacterial strains of Escherichia Coli, Staphylococcus Aureus, and Klebsiella Pneumoniae. Despite promising results, the models have not achieved perfect accuracy, specifically when the classes are unbalanced. On the other hand, Extreme Learning Machine (ELM) is a training algorithm for forward propagation of single hidden layer neural networks, which converges much faster than traditional methods and offers promising performance along with less programmer intervention. In this way, this study introduced improved ELMs, including two weighted ELMs proposed by Zong, and the SMOTE technique in order to create new synthetic samples of the minority class. After heuristic optimization of ELM hiper-parameters, results demonstrated 85% in accuracy and 85% in geometric mean for the classification problem in the case of weighted ELM 1 subject to the SMOTE technique of oversampling.
Fuente
Journal of Computer Science and Technology, 24(2), e08Link de Acceso
Click aquí para ver el documentoIdentificador DOI
doi.org/10.24215/16666038.24.e08Colecciones
La publicación tiene asociados los siguientes ficheros de licencia: