Mostrar el registro sencillo de la publicación

dc.contributor.authorTirado-Marabolí, Felipe
dc.contributor.authorLopez Cortez, Xaviera
dc.contributor.authorMacaya Mejías, Vicente
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorManríquez-Troncoso, José M.
dc.contributor.authorAhumada-García, Roberto
dc.date.accessioned2024-12-06T14:15:37Z
dc.date.available2024-12-06T14:15:37Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5803
dc.description.abstractEarly detection of antibiotic resistance is a crucial task, especially for vulnerable patients under prolonged treatments with a single antibiotic. To solve this, machine learning approaches have been reported in the state of art. Researchers have used MALDI-TOF MS in order to predict antibiotic resistance and/or susceptibility in bacterial samples. Weis, et al. implemented LR, LightGBM and ANN to study the antibiotic resistance on bacterial strains of Escherichia Coli, Staphylococcus Aureus, and Klebsiella Pneumoniae. Despite promising results, the models have not achieved perfect accuracy, specifically when the classes are unbalanced. On the other hand, Extreme Learning Machine (ELM) is a training algorithm for forward propagation of single hidden layer neural networks, which converges much faster than traditional methods and offers promising performance along with less programmer intervention. In this way, this study introduced improved ELMs, including two weighted ELMs proposed by Zong, and the SMOTE technique in order to create new synthetic samples of the minority class. After heuristic optimization of ELM hiper-parameters, results demonstrated 85% in accuracy and 85% in geometric mean for the classification problem in the case of weighted ELM 1 subject to the SMOTE technique of oversampling.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJournal of Computer Science and Technology, 24(2), e08es_CL
dc.subjectAntibiotic Resistance Predictiones_CL
dc.subjectMALDI-TOF Mass Spectrometryes_CL
dc.subjectMachine Learning in Medicinees_CL
dc.subjectExtreme Learning Machineses_CL
dc.subjectOversamplinges_CL
dc.subjectWeighted ELMes_CL
dc.titlePredicting bacterial antibiotic resistance using MALDI-TOF mass spectrometry databases with ELM applicationses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.urijournal.info.unlp.edu.ar/JCST/article/view/3483es_CL
dc.ucm.doidoi.org/10.24215/16666038.24.e08es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile